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1 Introduction 

 

The availability of open and commercial Earth Observation (EO) data is growing at unprecedented rate. 

Consequently, the many EO applications, ranging from land use and land cover (LULC) monitoring, crop 

monitoring and yield prediction, to disaster control, emergency services and humanitarian relief have more 

and more data to process in order to automatically extract complex patterns in such spatio-temporal data. 

Tools that make analyses of EO data easy, scalable and fast are in high demand.  

eo-learn is an open-source Python library that acts as a bridge between Earth Observation/Remote Sensing 

and the Python ecosystem for data science (DS) and machine learning (ML). eo-learn aims at making an entry 

to the field of Remote Sensing (RS) for non-experts easier, while at the same time bringing the state-of-the-

art tools for computer vision, machine learning, and deep learning (DL) existing in the Python ecosystem to RS 

experts. eo-learn is a by-product of the Perceptive Sentinel Horizon 2020 project and has received a lot of 

traction and usage within the EO/RS community. eo-learn continues to grow within GEM, with particular 

focus on bridging the data to ML frameworks.  

In Section 2, an introduction to eo-learn will be given, particularly to the various gateways to obtaining data. 

It will be followed by Section 3 with a short outline of existing ML frameworks, reporting on why only a subset 

of frameworks was selected. Section 4 will demonstrate the usage of eo-learn within ML frameworks for both 

shallow and deep learning. In the conclusion Section 5, we will outline future plans, with emphasis on 

supporting GEM use-cases. 

 

 

 

  

https://github.com/sentinel-hub/eo-learn
http://www.perceptivesentinel.eu/
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2 eo-learn 

 

eo-learn is a framework for working with EO data. Technically, it is a collection of open-source Python 

packages allowing a user to develop a data-analysis workflow that includes different EO/RS tasks, such as cloud 

masking, image co-registration, feature extraction, classification, etc.… For example, a user could use eo-

learn to predict land-use based on machine-learning techniques or determine water levels of a water body 

(dam, reservoir, lake, etc.) from satellite imagery. With its modular design, eo-learn is easy to use and 

encourages collaboration by sharing and reusing tasks used in typical EO-value-extraction workflows. eo-

learn is openly shared under MIT license, with very limited restriction on reuse, therefore making eo-learn 

noteworthy to a wider audience (e.g., academic community, commercial entities). The code is available on 

GitHub: 

https://github.com/sentinel-hub/eo-learn 

Since its inception, eo-learn has had 23 releases and has been installed more than 40 thousand times (the 

statistics up to May 2021). The repository on GitHub has 740 stars, 223 forks (copies of a repository on GitHub) 

and 27 contributors from 13 entities (companies, academic institutes, etc.) with almost 1700 commits. A large 

amount of effort has gone into documenting the features of the packages, providing examples and helping 

users with issues. The documentation is available on: 

https://eo-learn.readthedocs.io/en/latest/ 

While some users rely on GitHub for providing feedback (through GitHub issues), the user support is also 

available on Sentinel-Hub forum: 

https://forum.sentinel-hub.com/c/apps-services/python-sdk/23 

 

2.1 eo-learn overview 

eo-learn is subtitled a "bridge between EO and Python ecosystem for data science and ML", which is often 
represented with the Figure 1. 

 

Figure 1: eo-learn as a bridge between EO and other geo-spatial data (on left) and Python data science ecosystem (on 
right). 

eo-learn is divided into several sub-packages according to different functionalities and external package 

dependencies.  

https://github.com/sentinel-hub/eo-learn
https://eo-learn.readthedocs.io/en/latest/
https://forum.sentinel-hub.com/c/apps-services/python-sdk/23


 

3 

• eo-learn-core - The main sub-package which implements basic building blocks (EOPatch, EOTask and 
EOWorkflow) and commonly used functionalities. 

• eo-learn-io - Input/output sub-package that deals with obtaining data. 

• eo-learn-mask - The sub-package used for masking of data and calculation of cloud and snow masks. 

• eo-learn-geometry - Geometry sub-package used for geometric transformation and conversion 
between vector and raster data. 

• eo-learn-features - A collection of utilities for extracting data properties and feature manipulation. 

• eo-learn-ml-tools - Various tools that can be used before or after the machine learning process. 

• eo-learn-coregistration - The sub-package that deals with image co-registration. 

• eo-learn-visualization - Visualisation tools for core elements of eo-learn. 

The building blocks of eo-learn are EOPatch, EOTask and EOWorkflow objects from the eo-learn-core sub-

package. All data are stored in EOPatch instances, where dictionaries store raster data as NumPy arrays and 

vector data as Shapely geometries for both temporal as well as time-independent spatial and scalar 

information, as shown in Figure 2. An EOPatch instance is uniquely defined by coordinates of a bounding box 

and possibly the time-interval the stored data refers to. Information in any format readable by Python 

packages can also be stored in EOPatch objects. 

 

 

Figure 2: EOPatch data structure overview. 

Any operation on EOPatch instances is performed by EOTask instances, which can be inter-connected into a 

EOWorkflow to build a complete pipeline. EOWorkflow allows definition of a workflow in the form of an acyclic 

graph, where EOTask instances are vertices of the graph and EOPatch instances flow through the edges 

connecting the vertices. EOWorkflow can be run in parallel to different input EOPatch instances, allowing 

automatic processing of large amounts of spatio-temporal data.  

In the following sections we will shortly describe two sub-packages: eo-learn-io as a gateway to data, and 

eo-learn-ml-tools as a (simple) gateway to ML frameworks. 
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2.2 eo-learn-io data gateways 

To get the EO data eo-learn heavily relies on Sentinel Hub services, accessing it through the sentinelhub-py 
Python library. This gives users straight-forward access to all data collections available through Sentinel Hub, 
both publicly available EO data (e.g., Sentinels, Landsat), products (e.g., Global Land Cover by Copernicus Land 
Service, Global Surface Water dataset by the European Commission's Joint Research Centre and others), as 
well as users' own commercial datasets and other raster data imported to Sentinel Hub with "Bring your Own 
Data" capabilities. A broad illustration of data, available through Sentinel Hub services, is shown in Figure 3.  

 

Figure 3: Data collections available through Sentinel Hub service. 

At the same time, eo-learn-io sub-package contains task that allow users interaction with their own (locally) 

stored data as well; the ImportFromTiff task imports data from a GeoTiff file into an EOPatch structure. From 

that point onwards, tasks from eo-learn can be used in the same way as if the data was loaded from the 

Sentinel Hub service.  

2.3 eo-learn-ml-tools sub-package 

Figure 1 shows eo-learn as a bridge, where the side of the bridge facing EO data is covered by the eo-learn-
io gateway. eo-learn was designed with an idea in mind to work with the most popular open ML frameworks, 
however real integration has not been realized up to date. The eo-learn-ml-tools sub-package contains 
various tasks and utility methods that can be used before or after the machine learning process, representing 
the other gateway: to ML ecosystems. At the moment, the sub-package contains algorithms limited to pixel-
based approaches, and does not yet support causal analysis of time-series. Nevertheless, it has shown great 
value, and was used to produce LULC maps over large areas, e.g., over Azerbaijan, as shown in Figure 4. 

 

Figure 4: LULC predictions over 1224 EOPatches covering Azerbaijan. 

https://github.com/sentinel-hub/sentinelhub-py
https://collections.sentinel-hub.com/
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How eo-learn can be used to produce a LULC map as shown in Figure 4 is the main topic of a series of blog 

posts (part 1, part 2, and part 3) and notebooks in the eo-learn examples. These blog-posts have been read 

almost 30 thousand times, showing the reach and interest of both EO and ML communities in the topic.  

The following section will dig a bit deeper into the ML Python ecosystems, and how eo-learn approaches the 

gateways to ML frameworks. 

  

https://medium.com/sentinel-hub/land-cover-classification-with-eo-learn-part-1-2471e8098195
https://medium.com/sentinel-hub/land-cover-classification-with-eo-learn-part-2-bd9aa86f8500
https://medium.com/sentinel-hub/land-cover-classification-with-eo-learn-part-3-c62ed9ecd405
https://eo-learn.readthedocs.io/en/latest/examples.html#land-use-and-land-cover
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3 Machine Learning frameworks 

 

eo-learn is a data science (DS) tool that caters to various EO projects and workflows. As in other fields of DS, 
the predictive capability of ML algorithms is an important aspect of EO and RS. From the point of the 
information it provides, satellite imagery is pre-defined as it provides detector responses within pre-defined 
intervals in electro-magnetic spectrum, and the (pre-)processing steps define how this information is seen (by 
a machine). Once this pre-processing is done (eo-learn tasks already cover many common pre-processing 
workflows), the data has to be fed into the appropriate ML algorithm. Unfortunately, the vast availability of 
ML libraries accessible within Python ecosystem makes it difficult to incorporate all options into eo-learn 
without encountering dependency, interoperability and maintenance issues. So far, we have limited eo-learn 
interaction to few most popular libraries and frameworks, seen in Table 1. 

Table 1 clearly shows that currently, eo-learn is well coupled with conventional (shallow) ML algorithms, 

focused to pixel-based approaches. Section 4.1 demonstrates examples of such conventional approaches, 

which have been very well accepted in the EO community, and continue to be the state-of-the-art in many 

applications because of their ease of use, scalability, speed and performance.  

Within work package 4: Machine learning, the development and adoption of new ML techniques will be tested 

on project use-cases. The development of new approaches is primarily driven by recent advances from the 

research community of ML, DS, and computer vision (CV). ML methods which will prove useful for GEM use-

cases will be considered for integration into eo-learn. The integration of eo-learn and deep learning 

frameworks is thus one of the main objectives of the GEM project.  

Unfortunately, there are many DL frameworks available within Python ecosystem, with many similar but also 

different utilities. There is no clear favourite framework in an absolute sense, but depending upon the 

requirements, one framework may offer better functionalities than others. This poses a problem of which 

framework to choose, as supporting several comes with same risks as mentioned before: dependency, 

interoperability and maintenance issues. To limit the scope and increase the possibilities of success, we have 

investigated which DL frameworks are best suited, and particularly which are used by the partners in the GEM 

consortium.  

Already in 2019, the KDNuggets poll showed that TensorFlow, Keras and PyTorch covered 70% of all DL usage. 

We additionally considered also Apache MXNet, and Theano, but did not continue investigating their 

suitability. Theano is not actively developed anymore, and Apache MXNet has a rather small community 

support and is substantially less popular in the research community.  

Keras is widely known for being the most simplistic and easy to use neural network (NN) framework out there, 

while TensorFlow is better suited for building a production scale model, offering the best community support. 

For DL research, PyTorch provides the best functionalities and flexibility. Since Keras has become the 

recommended API for TensorFlow since version 2.0, we really just have two contestants: TensorFlow and 

PyTorch.  

https://www.kdnuggets.com/2019/05/poll-top-data-science-machine-learning-platforms.html
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://mxnet.apache.org/versions/1.8.0/
https://github.com/Theano/Theano
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Table 1: Python libraries and frameworks for ML that are used within eo-learn. 

Library / 

framework 

description 

numpy The fundamental package for scientific computing with Python. Offers comprehensive set 
of mathematical functions operating on multi-dimensional data arrays. All raster data 
within eo-learn are handled as numpy arrays and majority of EOTask implementations 
manipulate said arrays to perform some specific task, e.g. temporal interpolation. 

Some examples of using numpy in eo-learn: 

• NormalizedDifferenceIndexTask The task calculates a Normalized Difference Index 
(NDI) between two bands A and B  

• InterpolationTask Main EOTask for interpolation and resampling of time-series. 

pandas and 
geopandas 

pandas is a library providing high-performance, easy-to-use data structures and data 
analysis tools. Within eo-learn geopandas (geo "extension" to pandas) is used for 
handling vector data. 

Some examples of using pandas and geopandas in eo-learn: 

• geometry io tasks These tasks can import vector data from several sources, and 

write data to EOPatch in GeoDataFrame format 

SciPy SciPy is a Python-based ecosystem of open-source software for mathematics, science, and 
engineering. It has different modules for optimization, linear algebra, integration and 
statistics and is particularly useful for image (raster data) manipulations.  

Some examples of SciPy in eo-learn: 

• DoublyLogisticApproximationTask An EOTask for calculation of doubly logistic 

approximation on each pixel of a feature in EOPatch. 

• HaralickTask Task to compute Haralick texture images; the grey-level co-
occurrence matrix (GLCM) on a sliding window over the input image and extract 
the texture properties into new feature. 

• LocalBinaryPatternTask EOTask looks at points surrounding a central point and 
tests whether the surrounding points are greater or less than the central point. 

Scikit-Learn Scikit-Learn is an open-source ML framework, providing tools for model fitting, data 
preprocessing, model selection and evaluation, and many other utilities. Scikit-learn 
library can be used with the following ML tasks: classification, clustering, regression, 
factor analysis, principal component analysis, model selection, pre-processing, and 
dimensionality reduction. Scikit-Learn also provides model analysis tools like the 
confusion matrix for assessing how well a model performed. Scikit-learn is focussed on 
data modelling, making it a perfect companion to eo-learn, which handles data loading, 
manipulation and visualization. 

Some examples of using Scikit-Learn in eo-learn: 

• ClusteringTask Tasks computes clusters on selected features  

LightGBM LightGBM is a gradient boosting framework that uses tree-based learning algorithms. It is 
designed to be distributed and efficient, offering faster training speed, higher efficiency 
and lower memory usage to reach higher accuracy. It is particularly well suited to handle 
large-scale data. LightGBM is used in the Land Use / Land Cover Prediction for Slovenia 
example within eo-learn. 

 

 

https://numpy.org/
https://eo-learn.readthedocs.io/en/latest/eolearn.features.bands_extraction.html#eolearn.features.bands_extraction.NormalizedDifferenceIndexTask
https://eo-learn.readthedocs.io/en/latest/eolearn.features.interpolation.html#eolearn.features.interpolation.InterpolationTask
https://pandas.pydata.org/
https://geopandas.org/
https://eo-learn.readthedocs.io/en/latest/eolearn.io.geometry_io.html#module-eolearn.io.geometry_io
https://www.scipy.org/
https://eo-learn.readthedocs.io/en/latest/eolearn.features.doubly_logistic_approximation.html#eolearn.features.doubly_logistic_approximation.DoublyLogisticApproximationTask
https://eo-learn.readthedocs.io/en/latest/eolearn.features.haralick.html
https://eo-learn.readthedocs.io/en/latest/eolearn.features.local_binary_pattern.html
https://scikit-learn.org/stable/
https://eo-learn.readthedocs.io/en/latest/eolearn.features.clustering.html#module-eolearn.features.clustering
https://github.com/microsoft/LightGBM
https://eo-learn.readthedocs.io/en/latest/examples.html#land-use-and-land-cover
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TensorFlow was first developed by Google Brain and later open sourced. It is by far the largest framework in 

terms of the user base and community support. With TensorFlow one can create and train ML models also on 

mobile devices and high-performance servers by using TensorFlow Lite and TensorFlow Serving. PyTorch was 

developed by Facebook AI Research. It is deemed easy to learn, use and integrate with the rest of the Python 

ecosystem, is very customizable, and widely used in DL research. 

Even after consulting with consortium partners, there is no clear winner, so for the time being we are operating 

under the assumption that eo-learn will be supporting both of these two frameworks. Due to risk of exploding 

dependencies and possible dependency conflicts, the interface between eo-learn and particular framework 

will be in a separate and dedicated package. Each package for the given framework will implement data loaders 

for EO datasets and the most common DL models for EO applications (e.g., time-series classification, semantic 

segmentation). 

In the next section we will describe and demonstrate the first of such interfaces: eo-flow.  

3.1 eo-flow 

As you might have guessed from the name, eo-flow is an interface between eo-learn and TensorFlow. It is 
available at  

https://github.com/sentinel-hub/eo-flow 

The repository provides code and examples for creation of EO projects using TensorFlow. The code uses 

TensorFlow 2.0 with Keras as the main model building API. Common model architectures, layers, and data 

loaders for EO data are provided in the eoflow package. Custom models and input methods can also be 

implemented building on top of the provided abstract classes. The package aims at seamless integration with 

eo-learn, and favours both creation of models for prototyping as well as production of EO applications. 

The package can be installed by running the following command: 

$ pip install git+https://github.com/sentinel-hub/eo-flow 

Users can also install the package from source. To do so, one has to clone the repository and run the following 
command in the root directory of the project: 

$ pip install . 

3.1.1 Getting started with eo-flow 

The eoflow package can be used in two ways. For best control over the workflow and faster prototyping, the 
package can be used programmatically (in code). The example notebook should help users to get started with 
that. It demonstrates how to prepare a dataset pipeline, train the model, evaluate the model and make 
predictions using the trained model. 

An alternate way of using eoflow is by writing configuration json files and running them using eoflow's 

execute script. Configuration files specify and configure the task (training, evaluation, etc.) and contain the 

configurations of the model and input methods. Example configurations are provided in the configs directory. 

Once a configuration file is created it can be run using the execute command from the command line interface 

(CLI), allowing automation of training and testing of models. 

https://github.com/sentinel-hub/eo-flow
https://github.com/sentinel-hub/eo-learn
https://github.com/sentinel-hub/eo-flow/blob/master/examples/notebook.ipynb


 

9 

A simple example can be run in CLI using the following command. More advanced configurations are also 

provided. 

$ python -m eoflow.execute configs/example.json 

This will create an output folder temp/experiment containing the TensorBoard logs and model checkpoints. 

To visualize the logs in TensorBoard, run 

$ tensorboard --logdir=temp/experiment 

3.1.2 Writing custom code 

To get started with writing custom models and input methods for eoflow, users are encouraged to take a look 
at the example implementations (examples folder). Custom classes use schemas to define the configuration 
parameters in order to work with the execute script and configuration files. Since eoflow builds on top of 
TensorFlow 2.0 and Keras, model building is very similar. 

3.1.3 Package structure 

The sub-packages of eoflow are as follows: 

• base: this directory contains the abstract classes to build models, inputs and tasks. Any useful abstract 
class should go in this folder. 

• models: classes implementing the TensorFlow models (e.g., Fully-Convolutional-Network, GANs, 
seq2seq, etc.). These classes inherit and implement the BaseModel abstract class. The module also 
contains custom losses, metrics and layers. 

• tasks: classes handling the configurable actions that can be applied to each TF model, when using the 
execute script. These actions may include training, inference, exporting the model, validation, etc. The 
tasks inherit the BaseTask abstract class. 

• input: building blocks and helper methods for loading the input data (EOPatch, numpy arrays, etc.) into 
a TensorFlow Dataset and applying different transformations (data augmentation, patch extraction) 

• utils: collection of utility functions 

State-of-the-art architectures and examples for land cover, crop classification and semantic segmentation 
using satellite imagery and time-series are provided. 

  

https://github.com/sentinel-hub/eo-flow/blob/master/examples
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4 eo-learn and machine learning examples 

 

The previous section has described the current interfaces of eo-learn and ML frameworks. This section will 
present examples of using ML and DL methods with eo-learn. Conventional ML approaches will be shown 
first, since they are more tightly integrated within the library. More recent and complex DL approaches, mostly 
using eo-flow, will be presented later on in Section 0. 

 

4.1 Conventional ML 

This section reports examples of conventional ML methods applied to EO applications. In this context, 
conventional (i.e., shallow) ML refers to algorithms that model (non-)linear dependencies between input 
features and output target properties, such as land classes and crop cultures. The input features are typically 
hand-crafted and designed by the developers including domain knowledge. Example of conventional ML 
algorithms can be found in the scikit-learn examples.  

4.1.1 Land Use Land Cover classification example 

The notebook example in eo-learn shows the steps towards constructing a machine learning pipeline for 
predicting the land use and land cover for the region of Republic of Slovenia. The example uses features 
extracted from satellite images acquired by ESA’s Sentinel-2 satellite to train a model and use it for land cover 
prediction. The example leads the reader through the entire process of creating the pipeline, with details 
provided at each step. The topic is also covered in a series of blog posts. First two parts (part 1 and part 2) 
describe how eo-learn and Random Forest (RF) from LightGBM framework can be jointly used to predict 10 
land cover classes.  

 

Figure 5: A temporal stack of Sentinel-2 images is needed to predict land cover. 

Blog posts and corresponding notebook example in the eo-learn are amongst the most popular posts in our 

portfolio, and based on the number of related questions on the Sentinel Hub forum, also used over a number 

of different areas (countries).  

RF classifier consists of an ensemble of decision trees, where the ensemble classification is performed using 

majority voting of the single tree predictions. Although decision trees are considered simplistic, the ensemble 

approach is robust, not prone to overfitting and provides satisfactory results being substantially less 

computationally expensive compared to DL models. As we can see from Figure 6, the classifier correctly 

recognises the landing strip as grassland, which is marked as artificial surface in the official land use data.  

https://scikit-learn.org/stable/
https://eo-learn.readthedocs.io/en/latest/examples/land-cover-map/SI_LULC_pipeline.html
https://medium.com/sentinel-hub/land-cover-classification-with-eo-learn-part-1-2471e8098195
https://medium.com/sentinel-hub/land-cover-classification-with-eo-learn-part-2-bd9aa86f8500
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Figure 6: Sentinel-2 image (left), ground truth (centre) and prediction (right) for the area around the small sports airfield 
Levec, near Celje, Slovenia. The classifier correctly recognises the landing strip as grassland, which is marked as artificial 
surface in the official land use data. 

The confusion matrix plot in Figure 7 shows that for most of the classes the model seems to perform rather 

well, which is another reason for this approach to be so popular. 

 

Figure 7: Confusion matrix visualises the performance of an algorithm: ground truth is shown in rows while each column 
represents the instances of the predicted class. 

4.1.2 Water bodies delineation example 

The water monitor workflow example in eo-learn showcases an EO processing chain that determines water 
levels of an open water body (dam, reservoir, lake, etc.) from Sentinel-2 imagery. The input is a polygon with 
water body’s nominal water extent and the entire processing chain is performed using the eo-learn package, 
resulting in a vectorised extent of the water body. 

The EOWorkflow for the water body delineation is shown in Figure 8. The thresholding of the normalised 

difference water index (NDWI) is done with Scikit-Learn implementation of Otsu's method. 

https://eo-learn.readthedocs.io/en/latest/examples/water-monitor/WaterMonitorWorkflow.html
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Figure 8: EOTasks for waterbody extent delineation workflow. 

The approach presented in the example is used in the Bluedot Observatory, which implements automatic 

processing of about 13000 waterbodies globally for each cloudless Sentinel-2 observation. The publicly 

available dashboard thus holds almost 2 million measurements of water body extents from the whole archive 

of Sentinel-2 imagery. Figure 9 shows the historical water extents for Laguna Ralicó in Argentina. 

 

Figure 9: Laguna Ralicó in Argentina. Interactive dashboard allows users to move through time and view satellite imagery 
for each observation of water levels. 

  

https://www.blue-dot-observatory.com/
https://water.blue-dot-observatory.com/2307/2021-05-21
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4.2 Deep Learning 

This section reports examples of DL methods applied to EO applications. DL methods model the (non-)linear 
dependencies between input data and output target properties using more complex algorithms than 
conventional ML, typically based on Neural Networks. DL algorithms can use millions of parameters to model 
complex dependencies, and are typically trained iteratively through gradient optimization of an appropriate 
loss function.  

4.2.1 Field delineation example 

eo-flow has been used as integration of eo-learn and TensorFlow to develop an automatic system for parcel 
boundary delineation based on Sentinel-2 imagery. The delineated boundaries can aid the farmers speed up 
the declaration process and the paying agencies to better monitor changes in agricultural use. The 
development of the system was done by Sinergise within "New IACS Vision in Action” -- NIVA H2020 project. 
The repository contains code to generate automatic contours for agricultural parcels, given Sentinel-2 images, 
and has been used to generate contours for Lithuania and provinces in Spain. 

 

Figure 10: Example of agricultural parcel boundary predictions overlaid to a Sentinel-2 image. 

Different models were tested, building on top of a vanilla U-net architecture, with each version adding 

components building up to the architecture proposed in Waldner et al.1 Different components (e.g., residual 

convolutions, pyramid pooling) were implemented and tested separately to understand their influence on the 

results. The components and the final architecture can be found in eo-flow library, together with the 

implementations of metrics and loss functions. The blog post Parcel boundary detection for CAP describes the 

workflow composed of obtaining the satellite data, adding training data, preparing the data for DL model, 

followed by train and evaluation of the model, to final prediction and post-processing of the results.  

For demonstration purposes users can visualise the final results of the workflow on top of Sentinel-2 imagery 

through web application parcelio.  

 
1 Waldner, F. & Diakogiannis, F. I. Deep learning on edge: extracting field boundaries from satellite images with a 
convolutional neural network. arXiv.org (2019). 

https://www.niva4cap.eu/
https://github.com/sentinel-hub/field-delineation
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://medium.com/sentinel-hub/parcel-boundary-detection-for-cap-2a316a77d2f6
http://parcelio.sentinel-hub.com/
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Figure 11: Web application for interactive exploration of field delineation results. 

  

4.2.2 Tree cover prediction example 

The example notebook in eo-learn presents a toy example for training a deep learning architecture for 
semantic segmentation of satellite images using eo-learn and keras. The example showcases tree cover 
prediction over an area in France. The ground-truth data is retrieved from the EU tree cover density (2015) 
through Geopedia.  

The workflow is as follows: 

• input the area-of-interest (AOI) 

• split the AOI into small manageable EOpatches 

• for each EOPatch: 

– download red, green and blue (RGB) bands from Sentinel-2 Level-2A products providing bottom 
of the atmosphere (BOA) reflectance 

– retrieve corresponding ground-truth from Geopedia using a WMS request 

– compute the median values for the RGB bands over the time-interval 

– save to disk 

– select a 256x256 patch with corresponding ground-truth to be used for training/validating the 
model 

• train and validate a U-net. 

 

https://github.com/sentinel-hub/eo-learn/tree/master/examples/tree-cover-keras
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/view
http://www.geopedia.world/
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Figure 12: RGB image of an EOPatch on the left, and ground truth - EU tree cover density for 2015 - on the right. The RGB 
image is brightened to better show the forest areas. 

 

Figure 13: RGB patchlet (left), tree cover from ground truth (middle) and prediction (right). 

Despite good quality input data (albeit old), the model learns mostly to distinguish areas completely free of 

trees and areas with 100% tree cover. The classes in-between are more difficult to discern, as can be seen 

from the confusion matrix in Figure 14. On the other hand, the use of limited number of data (only three 

bands) makes this approach somewhat lightweight.  
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Figure 14: Confusion matrix for tree cover prediction. 

The code in the example is planned to be upgraded to use U-net model implemented in eo-flow in the 

forthcoming months with the main benefit of reducing the complexity of the notebook. 

4.2.3 Crop type classification example 

The example notebook shows the steps towards constructing an automated ML pipeline for crop type 
identification for an area of interest. Along with the example, two different ML approaches are applied and 
compared. The first one, the LightGBM, represents a state-of-the-art conventional ML algorithm. The second 
one is a Temporal Convolutional Neural Network (T-CNN) architecture from the field of DL, where the 
prediction is performed on a time-series of Sentinel-2 scenes from 2018.  

The example notebook leads the reader through the whole process of creating the pipeline, from four main 

processing blocks, i.e., EOWorkflows: (i) ground truth data, (ii) EO data, (iii) feature engineering + crop type 

grouping + sampling and lastly, (iv) prediction. The last part consists of several components: setting up and 

training each model (ML and DL), model validation and evaluation, prediction and finally visualization of 

results. 

The AOI in this example covers a small region around Wels in Austria, as can be seen in Figure 15. The first two 

steps fill the EOPatches with both ground truth and EO data, as can be seen in Figure 16. Figure 16 also shows 

that crop types in the AOI are very diverse; each colour stands for one of the over 200 classes. The third step 

prepares the data for training, e.g., fixes some mistakes from ground truth data, groups the crops, spatially 

erodes the field polygons to reduce mixing from borders of agricultural fields, evenly samples pixels from 

EOPatches, and finally prepares training and testing dataset.  

https://github.com/sentinel-hub/eo-learn/blob/master/examples/crop-type-classification/CropTypeClassification_Workflow.ipynb
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Figure 15: Crop type classification example shows the pipeline over an area in Austria. 

 

Figure 16: RGB plot of one Sentinel-2 observation (left), ground truth data over same area (right). 

The two architectures (and two frameworks) are subsequently evaluated. The RF model is created using 

LightGBM while the TempCNN DL architecture uses convolutional Neural Networks (CNNs). So far CNNs were 

mainly and successfully applied for image processing tasks. However, convolutional filters can be applied to 

1D signals as in the Temporal CNN, therefore successfully exploiting the temporal information of satellite 

image time series. The 𝐹1 scores, recall and precision for both approaches are given in Table 2. The confusion 

matrices are shown in Figure 17. 

https://www.mdpi.com/2072-4292/11/5/523/htm#sec4-remotesensing-11-00523
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Table 2: Scores per crop type for random forest (ML) and TCNN (DL) approach. 

 Random Forest Temporal CNN 

Crop type 𝐹1  Recall  Precision  𝐹1  Recall  Precision  

Peas 89.1 96.6 82.7 87.5 96.8 79.8 

Grass 75.4 86.0 67.2 67.1 65.9 68.3 

Winter rape 97.4 95.0 100.0 97.4 100.0 94.8 

Maize 92.9 94.6 91.2 88.1 95.5 81.8 

Winter cereals 94.7 99.8 90.2 92.8 99.8 86.7 

Pumpkins 67.7 59.4 78.6 76.1 80.4 72.2 

Summer cereals 69.6 71.2 68.1 66.2 58.0 77.0 

Vegetables 72.5 67.9 77.6 71.7 67.7 76.2 

Potatoes 82.4 79.1 86.0 86.6 82.0 91.8 

Other 58.1 60.4 56.1 52.3 51.5 53.2 

Soybean 90.2 92.8 87.8 92.2 91.9 92.5 

Orchards 78.6 68.3 92.4 79.4 75.0 84.3 

 

 

Figure 17: Confusion matrices for random forest (left) and TCNN (right) approach. 

The validation of the models shows that for most of the groups both perform very well, but with differences 

in their confusion for certain classes. The final step in the example is visualisation of the results, as we can see 

in Figure 18 (shown for RF approach). 
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Figure 18: Comparison of RF prediction (left) and ground truth (right) data. 

The notebook example goes deeper in trying to understand the differences between the two approaches, 

what are the reasons for better or worse performance over particular crop type class, and gives some insights 

on how to address them. It also shows the complexities and computational efficiency of the two approaches. 

Overall, it serves as a starting point for users to try this approach on their ground truth data, and allows them 

to improve on the limitations found.  

4.2.4 Super Resolution using Sentinel-2 and Deimos imagery example 

The temporal resolution of Sentinel-2 imagery allows users to focus on the time-series aspect of the data while 
its spatial resolution is sufficient for the majority of use-cases. Sometimes, though, ground sampling distance 
(GSD) of 10 meters just isn’t enough. One can resort to commercially available very high resolution (VHR) 
imagery, but monitoring large areas over longer time intervals with such imagery is very costly. This is where 
super-resolution (SR) techniques can help. Although VHR imagery is still needed to train the model, the amount 
of required VHR data is significantly reduced. While the resulting images are not as good as native high-
resolution images, they can still provide an approximation that can bridge the gap between cost and quality. 

The blog post describes the approach to super-resolve Sentinel-2 bands from their native 10 m to a 2.5 m GSD, 

therefore a 4x resolution enhancement. The research was done within the DIONE H2020 project where one 

of the missions is using novel techniques to improve the capabilities of satellite technology while integrating 

various data sources. 

The approach uses eo-learn for retrieving and pre-processing both Sentinel-2 and Deimos VHR imagery to 

the point when the test and training datasets are constructed. The model is adapted from ElementAI's 

HighResNet architecture, shown in Figure 19, which was modified to fit the specific data preparation pipeline.  

In this use-case, the problem was framed as a Multi-Frame Super Resolution problem, where noisy low-

resolution images of a scene are combined to reconstruct a high-resolution version.  

https://medium.com/sentinel-hub/multi-temporal-super-resolution-on-sentinel-2-imagery-6089c2b39ebc
https://dione-project.eu/
https://github.com/ElementAI/HighRes-net
https://github.com/ElementAI/HighRes-net
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Figure 19: HighResNet architecture, image from reference paper. 

The comparison of Sentinel-2 image and MFSR image is shown in Figure 20. From a qualitative point-of-view 

we can observed that: 

• the sharpness increase can be particularly noticed for high contrast features like roads, but less so for 
low-contrast features like agricultural land; 

• the model is able to learn texture, e.g. of trees in forest. Unfortunately, it also learns to predict shadows 
due to low sun elevation angles, which are more prominent in Deimos imagery since the images were 
acquired on average 2 hours before Sentinel-2 images. The predicted shadows can be noticed when 
looking at taller structures like buildings, or trees; 

• the model takes as input a temporal sequence of cloudless Sentinel-2 images (i.e. 8 frames) that can span 
over multiple weeks. However, the model predicts super-resolved images that contain features from the 
latest Sentinel-2 image. This means that a super-resolved image for each cloudless Sentinel-2 image can 
be predicted in a rolling-window fashion. 

 

Figure 20: Comparison of Sentinel-2 and super-resolved image. 

The published code will hopefully encourage anyone to try the workflow and make it work on their data and 

area of interest. While this use-case was tailored to Deimos imagery, which is not publicly available, any other 

https://arxiv.org/abs/2002.06460
https://github.com/sentinel-hub/multi-temporal-super-resolution
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VHR imagery can be used with some adjustments to the workflow. The code makes use of the PyTorch 

framework, and the implemented architecture, methods for calculating metrics and loss functions will be 

moved into the interface between eo-learn and PyTorch in the coming months.  
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5 Conclusions 

In this deliverable we have shown the integration of eo-learn with popular ML and DL frameworks. In 
particular, the integration with conventional ML frameworks is already in place, and has been used extensively. 
From the numerous DL frameworks, we have decided to interface eo-learn with two: TensorFlow and 
PyTorch. In order to avoid dependency, maintenance and implementation issues, we have decided that the 
gateways – interfaces between eo-learn and DL frameworks – will be developed as standalone packages. The 
integration with eo-learn and implementation of a number of DL models using TensorFlow framework has 
already been released in the eo-flow package. In the continuation of the GEM project, PyTorch interface will 
be added in a similar fashion, extending eo-learn workflows to another large DL community. 

In the main part of the deliverable, Section 4, we give a short description of a number of examples, using eo-

learn and either conventional or deep learning approaches, together with links where to find them. We hope 

they serve as good starting points that users can take and adapt to their use-cases.  

With the gateways to ML and DL methods in place, we will focus on development of new algorithms and 

models, focused particularly to support GEM use-cases. Additional examples will be added to the libraries to 

provide guidance to future users of eo-learn on how to implement ML algorithms in their workflows and 

processes. 

 


